Induksi Matematika

A. Induksi matematika adalah salah satu metode pembuktian dalam matematika. Secara umum, Induksi matematika merupakan metode untuk membuktikan bahwa suatu sifat yang didefinisikan pada bilangan asli adalah bernilai benar untuk semua nilai yang lebih besar atau sama dengan sebuah bilangan asli tertentu. Induksi matematika menjadi sebuah metode pembuktian secara deduktif yang digunakan untuk membuktikan suatu pernyataan benar atau salah. Dimana merupakan suatu proses atau aktivitas berpikir untuk menarik kesimpulan berdasarkan pada kebenaran pernyataan yang berlaku secara umum sehingga pada pernyataan khusus atau tertentu juga bisa berlaku benar. Dalam induksi matematika ini, variabel dari suatu perumusan dibuktikan sebagai anggota dari himpunan bilangan asli. Penerapan induksi matematika di dalam matematika yang menjadi pokok bahasan utama untuk menjabarkan bagaimana induksi matematika dapat membuktikan sebuah masalah matematika.


B. Induksi matematika sebetulnya merupakan semacam metode yang dipakai guna melakukan pemeriksaan terkait validasi pernyataan dalam himpunan bilangan positif maupun himpunan bilangan asli. Agar bisa melakukan pembuktian seperti ini, maka dibutuhkan dua langkah penting. 

1) Langkah basis
Langkah basis merupakan langkah awal untuk melakukan pembuktian induksi matematika. Langkah basis menunjukkan suatu pernyataan yang berlaku untuk bilangan 1. 

2) Langkah Induksi
Setelah langkah basis, ada langkah induksi. Langkah induksi menunjukkan bahwa apabila pernyataan itu berlaku untuk suatu bilangan n = k, maka pernyataan tersebut juga berlaku bagi bilangan n = k + 1. 


C. Latihan Soal

1. Buktikan bahwa jumlah n buah dari bilangan ganjil positif pertama ialah n2.

Temukan terlebih dahulu basis induksi. Untuk n = 1, maka jumlah satu buah dari bilangan ganjil positif pertama ialah 12 = 1. Hal ini benar karena jumlah dari satu buah bilagan ganjil yang positif pertama ialah 1. 

Terapkan induksi dengan mengandaikan p(n) benar, yakni:

1 + 3 + 5 + … + (2n – 1 ) = n2

Selanjutnya, perlihatkan bahwa p (n+1) juga benar yakni 1 + 3 + 5 + … + (2n – 1) + (2n + 1) = (n + 1)2 adalah benar. Hal ini bisa ditunjukkan dengan uraian berikut.

1 + 3 + 5 + … + (2n – 1) + (2n + 1)
= [1 + 3 + 5 + … + (2n – 1)] + (2n + 1)
= n2 + (2n + 1)
= n2 + 2n + 1
= (n + 1)2

Karena baik langkah basis maupun induksi keduanya sudah ditunjukkan dengan benar, maka total jumlah n buah dari bilangan ganjil positif pertama ialah n2. 

2. Dengan induksi matematika, buktikan bahwa:



3. Buktikan bahwa:















Comments